industryTemplate场的强度和天线的距离成反比(1/ r3),深圳可视化近场辐射检测。深圳可视化近场辐射检测
电磁波辐射基础知识:电磁辐射常见的产生方式是导体中电流的突变或者电压的骤升,辐射的路径通过PCB走线,器件的引脚,连接器或者是其它的金属介质,包括机箱,机架或者是产品的外壳。这个电磁辐射实际上是指电场和磁场的相互作用,相互影响。它被这样描述:正交时变的电场和磁场的传播。尽管电场和磁场是由同一现象产生的,但是他们对环境的影响是完全不同的。磁场只由移动的电荷(即电流)产生。在大多数电路中,电流通过PCB走线、器件引脚进行传导。因此,磁场在走线中产生的电磁场中倾向占主要地位,从而传导信号和能量到电路中不同的部分。深圳干扰源近场辐射检测天线旁边的磁场呈球形或弧形,特别是距离天线近的磁场。
近场EMI测量的问题在于使用近场探头的测量结果和使用天线进行远场测量的结果无法直接进行数学转换。但是存在一个基本原理:近场的辐射越大,远场的辐射也必然越大。所以使用近场探头测量,实际上是一个相对量的测量,而不是精确的一定量测量。使用近场探头进行EMI预兼容测试时,我们常常把新被测件测试结果和一个已知合格被测件的近场探头测试(近场测试)结果进行比较,来预测EMI辐射泄漏测试(远场测试)的结果,而不是直接和符合EMI兼容标准的限制线进行比较。同时,测试的一定数值意义也不大,因为这个测试结果和诸多变量,包括探头的位置方向、被测件的形状等会密切相关。
EMI辐射近场探头是用于配合频谱分析仪查找干扰源的设备。产品性能:EMI辐射近场探头(DC-9G)适合任何频谱分析仪、示波器或EMI测试接收机,频率范围超宽,满足您现在以及未来的测量需求。(DC-9G)包括4个磁场探头和1个电场探头,所有探头均覆盖绝缘层。配备手握式三角架,固定探头组,以消除抖动带来的影响。产品特点:覆盖有绝缘层的安全措施;非常方便的设计包括涂橡胶握把;非常小的尺寸,完善精确的干扰源定位;可以由一个信号源驱动产生的电磁敏感性测试领域。按照与天线距离的远近,又把辐射场区分为辐射近场区和辐射远场区。
辐射近场测量方法都需要测量出近场的相位和幅度,才能利用近场理论计算出天线的远场电特性,为了简化计算公式和测量系统以及降低测量时间与测量的相位误差(在频率f很高的情况下,即f>80GHz,相位的测量误差是很大的),于是,有学者提出只用近场测量值的幅度来重建天线远场的方法。该方法的基本思想为[10]:测出S1,S2两个面的幅度值(A1,A2),人为选定S1面测量值的相位(φ1),先由S1面的幅度、相位值(A1,φ1)计算出S2面的幅度、相位值(a2,φ2),用A2代替a2,再由A2,φ2求出S1面的a1,φ1,用A1代替a1,重新由A1,φ1求出S2面新的a2,φ2,如此迭代下去,直至A1-a1≤ε,A2-a2≤ε(ε为测量精度),便可得到S1或S2面的相位分布,这时,可由S1或S2实测的幅度和迭代过程所得到的相位求得天线的远场电特性。由于迭代收敛等原因,这方面的研究还未付诸实施。近的距离分界点是可能时,近场分量和远场成分的强度大致相同的时间的距离。深圳干扰源近场辐射检测
天线元件的电流产生磁场,方向每半个周期变换一次。深圳可视化近场辐射检测
散射近场测量的发展动态:散射体RCS的理论研究开始于60年代,早期的研究主要任务是对一些典型散射体(例如,板、球、柱体)进行理论建模并进行数值计算,取得了较多的研究成果,检验计算结果正确与否的方法是远场测量或紧缩场法。这两种方法中的任意一种方法都是由硬件来产生准平面波的(等幅面上幅度的起伏值≤0.25dB,等相面上相位的起伏值≤22.5°),远场测量法是利用增加散射体与照射源之间的距离R(通常R=5D2/λ,D为散射体截面的很大尺寸)来实现球面波到平面波的转换;紧缩场法则是利用偏馈抛物面来产生平面波的。因而工程上称为模拟平面波法,其主要缺陷是受外界环境影响很大,因此,实用起来有很多问题(如远场法中对测量场地有苛刻的要求;紧缩场法对主反射面的机械精度有严格的要求),为了克服这些问题,出现了散射近场的测量方法。深圳可视化近场辐射检测
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。