本发明涉及通信技术领域,尤其涉及一种射频功率放大器及通信设备。背景技术:在无线通信中,用户设备需要支持的工作频段很多。尤其是第四代蜂窝移动通信(lte)中,用户设备需要支持40多个工作频带(band)。而宽带功率放大器(poweramplifier,pa)的性能会随着工作频率变化,难以实现很宽的功率频率范围。lte工作频率一般分为低频段(lb,663mhz~915mhz),中频段(mb,1710mhz~2025mhz),高频段(hb,2300mhz~2696mhz)。lte射频前端也包含lb、mb、hb三个pa,每个功率放大器支持一个频段,需要三个宽带pa。尤其是lb的相对频率带宽,pa很难在整个频段内实现高线性和高效率,在设计的过程中会存在线性度和效率和折中处理,同时频段内的不同频点的性能也不同,安徽分散射频功率放大器。无线通信对发射频谱的杂散有严格的要求,安徽分散射频功率放大器。当pa后连接的滤波器对谐波抑制较少因此要求pa的输出谐波也较低。pa的匹配路同时要具有滤波性能。部分高集成的射频前端芯片(如2g前端模组,nbiot前端模组),要求pa的匹配滤波电路同时具有很高的谐波抑制性能,因此不需要再在pa后增加滤波器,安徽分散射频功率放大器。设计一种宽带功率放大器,在功率频率范围内实现一致且良好的性能,成为宽带pa的设计的重点和难点。微波功率放大器在大功率下工作要合理设计功放结构加装散热器以 提高功放管热量辐散效率保证放大器稳定工作。安徽分散射频功率放大器
nmos管mn11的漏极连接电容c11,nmos管mn12的漏极连接电容c12。nmos管mn11的漏极和nmos管mn12的漏极为第二主体电路中激励放大器的输出端。变压器副边的中端和第二变压器副边的中端分别通过电阻连接偏置电压,偏置电压用于为激励放大器中的共源放大器提供偏置电压;激励放大器栅放大器的栅极通过电阻接第二偏置电压。如图3所示,变压器t0副边的中端通过电阻r01接偏置电压vbcs_da,第二变压器t03副边的中端通过电阻r06接偏置电压vbcs_da,偏置电压vbcs_da用于为nmos管mn01、nmos管nm02、nmos管mn09、nmos管mn10提供偏置电压。nmos管mn03的栅极和nmos管mn04的栅极分别通过电阻r02接第二偏置电压vbcg_da,。nmos管mn11的栅极和nmos管mn12的栅极分别通过电阻r07接第二偏置电压vbcg_da。nmos管mn01的源极和nmos管mn02的源极接地,nmos管mn03的栅极和nmos管mn04的栅极分别通过电容c03接地。每个主体电路率放大器包括2个共源共栅放大器。如图3所示,主体电路的功率放大器中,nmos管mn05和nmos管mn07构成一个共源共栅放大器,nmos管mn06和nmos管mn08构成一个共源共栅放大器;第二主体电路的功率放大器中,nmos管mn13和nmos管mn15构成一个共源共栅放大器。广东射频功率放大器仿真功率放大器一般可分为A、AB、B、c、D、E、F类。
当射频功率放大器电路处于非负增益模式时,可控衰减电路处于无衰减状态,需要减少对射频功率传导的影响,在应用中需要将输入匹配电路和可控衰减电路隔离。当射频功率放大器电路处于负增益模式时,可控衰减电路处于衰减状态,一部分射频传导能量进入可控衰减电路变成热能消耗掉,另一部分射频传导能量进入功率放大器进行放大(在加强了负反馈的电路基础上,再放大衰减后的射频信号)。本申请实施例中的可控衰减电路处于衰减状态时,整个电路的衰减程度可达到-10db左右。可以理解为,比原来从rfin端进入电路的输入信号,已经衰减了10db。从整体电路的增益特性看,若原来的已经加强负反馈的放大器的增益是0db,那么现在功率放大器的增益就是-10db了。整个电路的负增益由三部分完成:(1)fet的偏置电路向降压降流切换;(2)射频功率放大器电路驱动级的反馈电路向反馈增强切换;(3)输入匹配中可控衰减电路的接地开关打开。其中(1)(2)同时满足时,从设计看整体电路增益低实现0db左右。再加入措施(3),电路可再多衰减10db左右。即满足负增益放大。图2a中的可控衰减电路的结构如图3所示,可控衰减电路包括:串联电感l和并联到地的电阻r和开关sw1。
抢占基于硅LDMOS技术的基站PA市场。对于既定功率水平,GaN具有体积小的优势。有了更小的器件,则可以减小器件电容,从而使得较高带宽系统的设计变得更加轻松。氮化镓基MIMO天线功耗可降低40%。下图展示的是锗化硅和氮化镓的毫米波5G基站MIMO天线方案,左侧展示的是锗化硅基MIMO天线,它有1024个元件,裸片面积是4096平方毫米,辐射功率是65dbm,与之形成鲜明对比的,是右侧氮化镓基MIMO天线,尽管价格较高,但功耗降低了40%,裸片面积减少94%。GaN适用于大规模MIMO。GaN芯片每年在功率密度和封装方面都会取得飞跃,能比较好的适用于大规模MIMO技术。当前的基站技术涉及具有多达8个天线的MIMO配置,以通过简单的波束形成算法来控制信号,但是大规模MIMO可能需要利用数百个天线来实现5G所需要的数据速率和频谱效率。大规模MIMO中使用的耗电量大的有源电子扫描阵列(AESA),需要单独的PA来驱动每个天线元件,这将带来的尺寸、重量、功率密度和成本(SWaP-C)挑战。这将始终涉及能够满足64个元件和超出MIMO阵列的功率、线性、热管理和尺寸要求,且在每个发射/接收(T/R)模块上偏差小的射频PA。MIMOPA年复合增长率将达到135%。预计2022年。输出匹配电路主要应具备损耗低,谐波抑制度高,改善驻波比,提高输出功 率及改善非线性等功能。
显示单元404可用于显示由用户输入的信息或提供给用户的信息以及终端的各种图形用户接口,这些图形用户接口可以由图形、文本、图标、视频和其任意组合来构成。显示单元404可包括显示面板,可选的,可以采用液晶显示器(lcd,liquidcrystaldisplay)、有机发光二极管(oled,organiclight-emittingdiode)等形式来配置显示面板。进一步的,触敏表面可覆盖显示面板,当触敏表面检测到在其上或附近的触摸操作后,传送给处理器408以确定触摸事件的类型,随后处理器408根据触摸事件的类型在显示面板上提供相应的视觉输出。虽然在图4中,触敏表面与显示面板是作为两个的部件来实现输入和输入功能,但是在某些实施例中,可以将触敏表面与显示面板集成而实现输入和输出功能。移动终端还可包括至少一种传感器405,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板的亮度,接近传感器可在终端移动到耳边时,关闭显示面板和/或背光。作为运动传感器的一种,重力加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用。宽带功率放大器应用GaN基器件符合高功率输出、高效率、高线性度、高工作频 率的固态微波功率放大器的要求。四川分散射频功率放大器
射频功率放大器地用于多种有线和无线应用中,包括 CATV,ISM,WLL,PCS,GSM,CDMA 和 WCDMA 等各种频段。安徽分散射频功率放大器
计算所述射频功率放大器检测模块的电阻值,比较所述射频功率放大器检测模块的电阻值与所述配置状态电阻值,所述射频功率放大器检测模块的电阻值与所述配置状态电阻值不相等,开启所述射频功率放大器,所述射频功率放大器检测模块的电阻值与所述配置状态电阻值相等,所述射频功率放大器配置完成。本方案在当移动终端切换射频频段启动射频功率放大器时,能够通过对射频功率放大器的状态检测,快速设置各个射频功率放大器从而提升射频的频段切换的速度。附图说明为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1是本申请实施例提供的一种移动终端射频功率放大器检测方法的流程示意图;图2为本申请实施例提供的一种射频功率放大器检测电路的连接示意图;图3是本申请实施例提供的一种移动终端射频功率放大器检测装置的结构示意图;图4是本申请实施例提供的移动终端的结构示意图。具体实施方式下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。安徽分散射频功率放大器
能讯通信科技(深圳)有限公司致力于电子元器件,以科技创新实现***管理的追求。能讯通信深耕行业多年,始终以客户的需求为向导,为客户提供***的射频功放,宽带射频功率放大器,射频功放整机,无人机干扰功放。能讯通信始终以本分踏实的精神和必胜的信念,影响并带动团队取得成功。能讯通信始终关注电子元器件市场,以敏锐的市场洞察力,实现与客户的成长共赢。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。