全息技术能记录物体光波振幅和相位的全部信息,并能把它再现出来。因此,应用全息技术可以获得与原物完全相同的立体像(从不同角度观察全息图的再现虚像,可以看到物体的不同侧面,有视察效应和景深感)。
全息图的任何局部都能再现原物的基本形状,物体上任意点散射的球面波可抵达全息干板的每个点或每个局部,与参考光相干涉形成基元全息图,也就是全息图的每点或局部都记录着来自所有物点的散射光。因此,物体全息图每一局部都可以再现出记录时所有照射到该点局部的物点,形成物体的像,也就是破损后部分全息图仍能再现物体的像。
作为光波信息的记录者,有无全息图是判断我们所接触的3D技术是否为全息技术的重要标准。
看到这恐怕很多读者会问:真正的全息投影何时能够实现?理论上来说可以实现的方式有两种,首先就是通过空气中的电离作用制造光的折射,从而实现全息投影,其次就是通过激光效应来制造真实立体的全息影像。
据了解现在已经有实验室做到了不借用任何介质,单纯在空气中实现全息投影,但技术还不够成熟。首先这种方式的成本过于高昂,难以实现大规模商用,其次包括画质、颜色等问题也还没有解决,所以在笔者看来,短时间内真正的全息投影还只能出现在实验室中。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。