其中:串联电感l用于匹配并联到地支路中的sw1在关闭状态的寄生电容,减少对后级驱动放大电路的输入匹配电路的影响。在负增益模式下,sw1处在导通状态,电阻r主要承担对射频输入功率分流后的衰减,sw1主要负责射频输入支路端与接地端(gnd)的导通。若系统要求的增益很低,r也可以省略,北京定制开发射频功率放大器,用sw1自身导通时寄生的电阻吸收和衰减射频功率。这里的开关可以用各种半导体工艺实现,如互补金属氧化物半导体(complementarymetaloxidesemiconductor,cmos),绝缘体上硅(silicononinsulator,soi)cmos管,pin二极管等,其中,pin表示:在p和n半导体材料之间加入一薄层低掺杂的本征(intrinsic)半导体层,北京定制开发射频功率放大器,组成的这种p-i-n结构的二极管就是pin二极管。需要说明的是,r所在的可控衰减电路与后级的功率放大电路的关系是并联关系。并联关系在于电压相同时,r越小,可控衰减电路分得电流越大,得到的功率越多。故r越小,进入可控衰减电路的功率越多,相应的进入后级功率放大电路的功率就越少,衰减就越大。所以,为了实现大幅度的衰减,r有时需要省略,依靠sw自身的导通电阻ron。其中,串联电感l1的通过以下方法得到:在未加入可控衰减电路时,若输入匹配电路101对应的阻抗为:z0=r0+jx0。输出匹配电路主要应具备损耗低,北京定制开发射频功率放大器,谐波抑制度高,改善驻波比,提高输出功 率及改善非线性等功能。北京定制开发射频功率放大器
LateralDouble-diffusedMetal-oxideSemiconductor)和GaAs,在基站端GaN射频器件更能有效满足5G的高功率、高通信频段和高效率等要求。目前针对3G和LTE基站市场的功率放大器主要有SiLDMOS和GaAs两种,但LDMOS功率放大器的带宽会随着频率的增加而大幅减少,在不超过约,而GaAs功率放大器虽然能满足高频通信的需求,但其输出功率比GaN器件逊色很多。在5G高集成的MassiveMIMO应用中,它可实现高集成化的解决方案,如模块化射频前端器件。在毫米波应用上,GaN的高功率密度特性在实现相同覆盖条件及用户追踪功能下,可有效减少收发通道数及整体方案的尺寸。实现性能成本的优化组合。随着5G时代的到来,小基站及MassiveMIMO的飞速发展,会对集成度要求越来越高,GaN自有的先天优势会加速功率器件集成化的进程。5G会带动GaN这一产业的飞速发展。然而,在移动终端领域GaN射频器件尚未开始规模应用,原因在于较高的生产成本和供电电压。GaN将在高功率,高频率射频市场发挥重要作用。GaN射频PA有望成为5G基站主流技术预测未来大部分6GHz以下宏网络单元应用都将采用GaN器件,小基站GaAs优势更明显。就电信市场而言,得益于5G网络应用的日益临近。山东U段射频功率放大器检测技术功率放大器有GAN,LDMOS初期主要面向移动电话基站、雷达,应用于 无线电广播传输器以及微波雷达与导航系统。
微处理器通过控制vgg=,使得开关导通,可控衰减电路处于衰减状态,此时,一部分射频传导功率进入可控衰减电路变成热能消耗掉,另一部分射频传导功率进入可控衰减电路之后的电路,输入信号衰减,射频功率放大器电路实现非负增益模式。当开关关断时,电感用于匹配寄生电容,以减少对后级电路的影响,开关可等效为寄生电容coff,不需要考虑电阻,可控衰减电路等效为图8(a);当开关导通时,开关等效为寄生电阻ron,也不需要考虑电阻,可控衰减电路等效为图8(b),因为第二电阻和寄生电阻ron都很小,因此流入可控衰减电路的电流较大,该电路路消耗的功率较多,对输入信号的衰减作用也较强。其中,为了实现大程度的衰减,在非负增益模式下,应使可控衰减电路的电阻尽可能的小,可在可控衰减电路去掉第二电阻r2,通过寄生电阻ron来衰减输入信号。若可控衰减电路中没有第二电阻,当射频功率放大器电路的负增益大小确定时,开关的寄生电阻的大小也可确定。当开关导通时,开关工作在线性区,寄生电阻ron的大小满足公式:ron=1/(μ×cox×(w/l)×(vgs-vth)),其中,μ是电子迁移率,cox是单位面积的栅氧化层电容,w/l是开关t1的有效沟道长度的宽长比,vgs是栅源电压,vth是阈值电压。
具体地,第二pmos管mp01的源极通过电阻r13接电源电压vdd。第二nmos管mn18的栅极与第二pmos管mp01的栅极连接后与nmos管mn17的漏极连接。第三nmos管mn19的漏极与第三pmos管mp02的漏极连接,第三nmos管mn19的源极接地,第三pmos管mp02的源极接电源电压,第三nmos管mn19的栅极与漏极连接,第三pmos管mp02的栅极和漏极连接。第二nmos管mn18的漏极与第二pmos管mp01的漏极的公共端记为连接点a,第三nmos管mn19的漏极与第三pmos管mp02的漏极的公共端记为第二连接点b,连接点a与第二连接点b连接,第二连接点b通过电阻r15接自适应动态偏置电路的输出端vbcs_pa,输出端vbcs_pa用于为功率放大器源放大器的栅极提供偏置电压。第四nmos管mn20的漏极与第四pmos管mp03的漏极连接后与pmos管mp04的栅极连接,第四nmos管mn20的源极接地,第四pmos管mp03的源极接电源电压vdd,第四nmos管mn20的栅极和第四pmos管mp03的栅极连接后与nmos管mn17的漏极连接。pmos管mp04的漏极通过电阻r17接自适应动态偏置电路的第二输出端vbcg_pa,第二输出端vbcg_pa用于为功率放大器栅放大器的栅极提供偏置电压。图3示出了本申请一实施例提供的高线性射频功率放大器的电路原理图。功率放大器一般可分为A、AB、B、c、D、E、F类。
功率放大电路105,用于放大级间匹配电路输出的信号;输出匹配电路106,用于使射频功率放大器电路和后级电路之间阻抗匹配。其中,射频功率放大器电路应用于终端中,可以根据终端与基站的距离选取对应的模式。当终端与基站的距离较近时,路径损耗较小,终端与基站的通信需要射频功率放大器电路的输出功率较小,射频功率放大器电路此时处于负增益模式下,输入信号进行一定程度的衰减,可得到输出功率较小的输出信号;当终端与基站的距离较远时,路径损耗较大,终端与基站的通信需要射频功率放大器电路的输出功率较大,射频功率放大器电路此时处于非负增益模式下,对输入信号进行一定程度的放大,可得到输出功率较大的输出信号。在一个可能的示例中,模式控制信号包括控制信号和第二控制信号,其中:控制信号表征将射频功率放大器电路切换为非负增益模式时,可控衰减电路,用于响应控制信号,控制自身处于无衰减状态;第二控制信号表征将射频功率放大器电路切换为负增益模式时,可控衰减电路,用于响应第二控制信号,控制自身处于衰减状态。其中,当可控衰减电路处于无衰减状态时,可控衰减电路不工作;当可控衰减电路处于衰减状态时,可控衰减电路工作。功率放大器线性化技术一一功率回退、前馈、反馈、预失真,出于射频 预失真结构简单、易于集成和实现等优点。江苏V段射频功率放大器哪家好
根据晶体管的增益斜率和放大器增益要求,确定待综合匹配网络的衰减斜 率、波纹、带宽,并导出其衰减函数。北京定制开发射频功率放大器
计算所述射频功率放大器检测模块的电阻值,比较所述射频功率放大器检测模块的电阻值与所述配置状态电阻值,所述射频功率放大器检测模块的电阻值与所述配置状态电阻值不相等,开启所述射频功率放大器,所述射频功率放大器检测模块的电阻值与所述配置状态电阻值相等,所述射频功率放大器配置完成。本方案在当移动终端切换射频频段启动射频功率放大器时,能够通过对射频功率放大器的状态检测,快速设置各个射频功率放大器从而提升射频的频段切换的速度。附图说明为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1是本申请实施例提供的一种移动终端射频功率放大器检测方法的流程示意图;图2为本申请实施例提供的一种射频功率放大器检测电路的连接示意图;图3是本申请实施例提供的一种移动终端射频功率放大器检测装置的结构示意图;图4是本申请实施例提供的移动终端的结构示意图。具体实施方式下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。北京定制开发射频功率放大器
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。