>> 当前位置:首页 - 产品 - 吉林超声微泡给药 欢迎来电 南京星叶生物科技供应

吉林超声微泡给药 欢迎来电 南京星叶生物科技供应

信息介绍 / Information introduction

微泡空化时细胞膜和血管通透性的变化。电子显微镜已经证明,在细胞膜内产生的小孔与微泡的崩溃和射流的产生有关。根据超声参数,细胞膜内产生的孔隙可能是短暂的,导致细胞死亡或成功地将外源物质引入细胞质。除了改变细胞膜通透性外,将超声应用于含有微泡的小血管还能改变血管壁的通透性,导致颗粒外渗到间隙。这种***通透性的变化取决于泡的大小、壳的组成以及***直径与泡直径的比值。改变超声参数,如声压和脉冲间隔,以及物理参数,如注射部位和微血管压力,可以比较大限度地提高微球的局部药物递送。在超声中心频率为1MHz的情况下,0.75MPa的压力足以在体外大鼠肌肉微循环中产生***破裂。超声脉冲间隔既影响观察到外渗的点数,也影响输送的物质体积,两者在脉冲间隔为5s时均达到比较大值。人们认为,要使输送的物质体积比较大化,需要将微泡补充到脉冲之间的区域。研究还表明,随着***血压的升高,微泡通过***壁的运输也会增加。除了靶向成像,超声微泡造影剂还可用于提供有效载荷。吉林超声微泡给药

吉林超声微泡给药,超声微泡

微泡的惯性空化和破坏可产生强大的机械应力,增强周围组织的渗透性,并可进一步增加药物从血液外渗到细胞质或间质中。超声造影剂是高回声的微泡,具有许多独特的性质。微泡基本上可以提高常规超声成像对微循环的灵敏度。微泡响应入射超声脉冲的共振导致非线性谐波发射,在微泡特异性成像中作为微泡的特征。高频超声的稳定空化也可以温和地增加组织的通透性,即使在高的情况下也不会造成任何损害声压。微泡可以携带药物,释放药物超声介导的微泡破坏同时增强血管通透性,增加药物在组织中的沉积。可以将各种靶向配体偶联到微泡表面,实现配体定向和位点特异性积累,用于靶向成像。山西超声微泡化合物组织中的生物学改变对纳米微泡的效率起着至关重要的作用。

吉林超声微泡给药,超声微泡

将靶向成像方式与病变定向***相结合,可以确定与积极***反应可能性有关的几个生物学相关事实。特别令人感兴趣的问题是,目标是否存在,药物是否达到目标,以及预期目标是否真的是正在***的目标。有多种有趣的生物过程适合应用靶向超声成像来监测药物递送的疗效。我们的研究小组描述了一种对比增强超声技术,将破坏-补充超声与亚谐波相位反转成像相结合,以提高空间分辨率,并区分对比回波和非苏回波。在非破坏性成像脉冲期间,声音以指定频率从换能器传输,而接收函数则被检测到原频率的次谐波频率。次谐波振荡是由超声造影剂而不是周围组织***产生的,导致血管内造影剂产生大量的次谐波回声,而周围组织几乎没有信号。生成了血流速度和整体综合强度的定量参数图,并且与金标准技术相比,灌注测量更有利。该技术用于监测用抗血管生成药物***的实验性**的反应,并确定对***的不同反应水平。

微泡表面的加载也可以通过配体-受体相互作用来实现。例如,Lum等人**近报道了一项研究,其中纳米颗粒通过生物素-亲和素连锁结合到外壳上。固体聚苯乙烯纳米颗粒作为模型系统,可以用可生物降解的材料代替装载药物或基因的纳米颗粒。或者,软纳米颗粒,如脂质体,已成功加载到微泡。这些结果提出了一种模块化的加载方法,即首先将***性化合物加载到纳米颗粒室中,然后将其加载到微泡载体上。这种方法提供了一个多功能平台,可以根据特定***剂的疏水性、大小和释放要求进行定制。微泡的制造通常通过两种通用技术来进行:分散气体颗粒的自组装稳定,以及芯萃取的双乳液制备。

吉林超声微泡给药,超声微泡

微泡表面的电荷和配体可以用来增加靶向的特异性。Lindner等人发现,由于与先天免疫系统的相互作用,阳离子微泡在经历缺血/再灌注和炎症的组织的微循环中持续存在。然而,考虑到生物环境的复杂性,静电相互作用通常没有足够的特异性。另一方面,配体-受体相互作用在生物介质中产生高特异性。在这种情况下,微泡表面被配体装饰,这些配体特异性地结合血管腔内细胞上的受体。如上所述,脂质聚合物是形成稳定微泡所必需的。聚合物的存在需要配体和单层外壳之间的间隔物,以便配体询问其在相对表面上的受体。通常情况下,配体被与周围的链长度相等或更长的间隔剂拴在一起。这使配体比较大限度地暴露于生物环境中。旨在比较大限度地使配体暴露于靶组织的表面结构也存在增加免疫原性化合物呈递的风险,从而导致早期颗粒***,或者更糟的是,产生超敏反应。例如,有的实验室的数据清楚地表明,存在于微泡上的生物素共轭脂聚合物***了人类和小鼠的补体系统。需要更多的研究来测试栓系抗体或肽配体是否也会引发免疫反应。为了解释免疫原性作用,Borden等人(47)表明,配体可以被聚合物覆盖层掩盖以提高循环半衰期,然后可以通过超声辐射力局部显示以与靶标结合。因为纳米微泡的尺寸小于1µm;因此,它们可以通过EPR效应渗透到血管壁并积聚在斑块内。浙江超声微泡惰性气体

超声已被证明可以增强溶栓,超声与微泡结合使用,在溶解血栓方面比单独使用造影剂或超声更成功。吉林超声微泡给药

微泡的制造通常通过两种通用技术来进行:分散气体颗粒的自组装稳定,以及芯萃取的双乳液制备。第一种技术用于脂质或蛋白质基气泡。气体(溶解度低的空气或氟化气体)分散在含有脂质或表面活性剂胶束混合物或经超声变性的蛋白质的水介质中。这些成分沉积在气液界面上,使其稳定下来。有些微泡制剂在水相中保存数月仍能保持稳定。或者,微泡可以快速冷冻和冻干,以便在干燥状态下延长储存时间。水的加入导致微泡水分散体在使用前立即发生重组。聚合微泡是通过双乳液水-油-水技术制备的,该技术通过高剪切混合或超声在水相中产生有机溶剂微粒。有机“油”溶胶喷口含有溶解的可生物降解聚合物(如聚乳酸-共乙醇酸),以及内部水相的微滴或纳米滴。然后对颗粒进行冻干或喷雾干燥。有机溶剂和水被除去,留下一个内部有空隙的聚合物外壳。通常,加入挥发性化合物,如碳酸氢铵、碳氢化合物、氟碳化合物或樟脑,以帮助在颗粒中产生空心**。这类颗粒在干燥状态下储存时非常稳定。它们在水或生物介质中缓慢水解,形成乳酸和乙醇酸,具有完全的生物相容性。颗粒的壳厚和核大小可以通过聚合物、有机溶剂、内部水和成孔化合物的浓度和比例来控制。吉林超声微泡给药

免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。

查看全部介绍
推荐产品  / Recommended Products