工业4.0就是无人作业的天下,各行各业都在进行无人化改造,农业领域也不例外。近年来随着政策的不断导向,我国已经成功建立了31个无人农业作业实验区。这些无人农业作业试验区覆盖水稻、玉米、小米等14种作物,累计投入智能农机和系统62万台(套),智能化作业面积达到1.7亿亩。综合抽样统计,作业效率提升60%、人工减少50%、土地利用率在95%以上。这些无人农业区利用无人机、无人车进行作物的播撒、浇灌、施肥等一系列操作,而无人设备要想实现这些功能要么是人工的远程精细操控,要么就是靠图像处理来实现完全的自动化。后者通过在无人设备上加装高性能的AI图像处理板,这些图像处理板在算法的赋能下,能够实现精细的目标识别和检测,例如无人机,在无人机上安装慧视光电推出的微型双光吊舱,吊舱内置图像处理板,无人机在起飞后能够自动识别哪些是作物哪些是其他物体。如何快速完成大量的数据标注工作?成都高性能低功耗AI智能视觉系统
巡检机器人能够实现抵近待测设备,进行精细的测温、测量以及感应。同时具备自主导航、实时避障功能,能够智能规划比较好巡检路径、规避站内检修区域,效率是人工的好几倍,并且还不会出现传统人工巡检造成人身危害等行为。这种机器人搭载的图像处理板可以自由选择,例如成都慧视开发的Viztra-HE030图像处理板,就可以很好的应用在电力巡检领域,这块板卡采用了瑞芯微全新一代旗舰芯片RK3588,采用8nmLP制程,四大四小八核处理器;搭载八核64位CPU,主频高达2.4GHz;集成ARMMali-G610MP4四核GPU,内置AI加速器NPU,算力高达6.0TOPS。用在电力巡检领域完全可以满足需求,并且成都慧视可以根据使用场景进行外壳的特殊化定制,有效处理散热防水,为机器人的户外工作提供更加稳定的处理能力。成都周界入侵AI智能安防利用成都慧视推出的SpeedDP能够帮助训练跟踪算法。
一些化工园区、石油炼厂等需要在极其安全的环境中作业,因此对于园区的巡检工作十分关键。在长时间的工作中,园区的生产设备会出现被腐蚀、老化、磨损,给生产带来了风险,一旦检查疏忽,后果不堪设想。无人机搭载红外光电吊舱能够远距离检查设备,避免直接接触,实现对关键点的变倍放大观察,发现已存在或者潜在的泄漏、损坏,有效减少安全事故。另外无人机体积小巧、重量轻盈,能够在复杂环境中灵活穿梭。通过远程操控,无人机可以避免人工巡检过程中可能遇到的风险,确保人员安全。成都慧视开发的VIZ-100T三轴三光微型吊舱,具备10倍变焦能力的可见光相机,在白天进行巡检时,能够远距离对设备进行观察分析,同时集成了640*512的高分辨率红外相机,能够实现清晰的红外成像,在夜间进行安全巡检,搭载于小型无人机上,能够对出现问题的目标点位进行定位,实时视频数据回传,为园区巡检提供安全保障。
无人机搭载如光电吊舱等带有摄像头的设备后,达到了实现智能识别的硬件条件,但是传统的摄像头只能获取图像,并不具备AI识别的功能。无人机AI识别算法的关键还是在于模仿人眼一样进行视觉处理,然后AI进行智能提取和分析图像,再和训练模型进行快速比对,从而在无人机快速飞行的过程中做到实时目标识别。要想实现目标识别需要的硬件支持就是AI图像处理板。图像处理板通过算法的赋能,就能够对目标区域的物体进行AI识别分析,从而做出判断。由于无人机作业的环境复杂,因此对于图像处理板的要求需要进一步提升。成都慧视开发的Viztra-HE030图像处理板,采用了工业级芯片RK3588,采用先进架构,8核(4大4小)处理,算力能够达到6.0TOPS。同时,慧视光电能够根据需求环境定制丰富的输出接口。模型部署,就是将机器学习模型集成到现有的生产环境中,在这个环境中,模型可以接受输入并返回输出。
AI的不断应用发展使得传统的人工工作的弊端得到了很好的弥补。比如在图像标注这个领域,传统的标注需要招聘大量的人员,并且标注图像所耗费的时间精力也是不可估量的,而AI模型的出现让这一切都成为过去。利用慧视光电打造的深度学习算法开发平台SpeedDP,就能够针对场景识别进行特有的模型部署训练,通过大量的训练,让AI学会自动标注图像。平台采用标准的AI算法开发流程,通过从需求分析、数据制作到模型训练、测试验证以及模型部署几个主要模块。SpeedDP用于模型训练和评估测试的数据集是由一系列的图像和标注文件组成的,平台支持多种开源数据格式如VOC和COCO。而目前平台共支持yolox系列和yolov8系列模型用于模型训练(分割任务*支持yolov8模型),通过不断额测试验证,就能够让AI实现海思、RockChip嵌入式硬件平台等模型部署的可视化AI开发功能。算法的提升得益于大量的数据标注。成都智慧城市AI智能智慧眼
无人机识别算法训练可以用慧视SpeedDP。成都高性能低功耗AI智能视觉系统
SpeedDP包含如下五个模块:1.数据集管理:采集并制作用于训练和测试的数据集;2.项目配置:根据项目的实际情况,对调整相关配置参数进行定制化开发;3.模型训练:完成训练参数配置,开始模型训练并监控训练过程,损失精度可接受时,暂停训练;4.模型测试:使用数据集或实际业务场景图像视频数据进行模型评估;5.模型部署:模型测试结果达到预期,进行模型转化和部署。据客户反馈,使用了慧视光电的SpeedDP后,初步提升效率在80%以上,开发周期缩短,同时可售可租的模式,也让企业的选择更加灵活,为所在单位降本增效提供帮助。成都高性能低功耗AI智能视觉系统
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。