内融冰式冰蓄冷:该系统是将冷水机组制出的低温乙二醇水溶液(二次冷媒)送入蓄冰槽(桶)中的塑料管或金属管内,使管外的水结成冰。蓄冰槽可以将90%以上的水冻结成冰。融冰时从空调负荷端流回的温度较高的乙二醇水溶液进入蓄冰槽,流过塑料或金属盘管内,将管外的冰融化,乙二醇水溶液的温度下降,再被抽回到空调负荷端使用。同时该流程可以蓄冷、蓄冷并供冷、单溶冰供冷、冷机直接供冷等。并联流程在发挥制冷机与蓄冰罐的放冷能力方面均衡性较好,夜间蓄冷时只需开启功率较小的初级泵运行,蓄冷时更节能,运行灵活。研究表明,极寒条件下,冰体的分子排列方式发生明显变化,形成动态冰。贵州过冷水动态冰节能技术
运行分析:冰蓄冷空调系统进行直供和蓄冷运行的对比测试,结果如下:每日峰、平、谷电时段及电价:峰电:8∶00~11∶00和18∶00~23∶00,电价为0.878元/kWh;平电:7∶00~8∶00和11∶00~18∶00,电价为0.540元/kWh;谷电:23∶00~次日7∶00,电价为0.224元/kWh。效益分析:空调面积约5700m2,蓄冷系统选用2台螺杆式双工况制冷机组,单机空调工况制冷量70RT(246kW),制冰工况制冷量47RT(165kW)。蓄冷系统由一个60m3蓄冰罐,内装STL-CO型冰球,3台溶液泵,冷却水系统,自控系统组成。蓄冷冷媒为乙二醇(25%)——水溶液。贵州过冷水动态冰节能技术动态冰通常存在于南极和北极等极端寒冷地区,具有极高研究价值。
冰蓄冷技术是利用夜间电网低谷时间,将冷媒(通常为乙二醇的水溶液)制成冰将冷量储存起来,白天用电高峰期融冰,将冰的相变潜热用于供冷的成套技术。这种蓄能措施能够有效地利用峰谷电价差,在满足终端供冷(热)需要的前提下降低运行成本,同时对电网的供需平衡起一定的调节作用。公共建筑耗能远高于民用建筑,由于工作时间的限制,电能消耗主要集中在白天,导致用电高峰期电力紧张,但是夜晚低谷期电力不能得到充分利用。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高, 完全可以弥补蓄冰的冷能损失。
动态冰蓄冷与静态冰蓄冷的定义:动态冰蓄冷:也被称为冰蓄热,是指在高负荷期间,利用制冷机组将冰水制冷系统循环制冷,将低温蓄冷水循环通过蓄冷容器进行充电,在低负荷期间释放低温蓄冷水来提供空调冷量的一种节能方法。静态冰蓄冷:是将制冷机组在低峰期运行,将低温蓄冷媒体一次性充满蓄冷容器,并在高峰期通过泵送方式向空调末端进行热交换,取得冷量的一种方式。在实际应用中,还需要考虑建筑风格、管路设计、建筑结构等方面的因素,逐步发展其应用前景。智能化控制,适应不同制冷需求。
冰蓄冷主要特点:电力移峰填谷 均衡电力负荷,加强电网负荷侧(Demand Side Management)的管理。由于转移了制冷机组用电时间,起到转移电力高峰期用电负荷的作用。制冷机组在夜间电力低谷时段运行,储存冷量,白天用电高峰时段,用储存的冷量来供应全部或部分空调负荷,少开或不开制冷机。对城市电网具有明显的“移峰填谷”的作用,社会效益明显。享受峰谷电价 由于电力部门实行峰、谷分时电价政策,所以冰蓄冷中央空调合理利用谷段低价电力,与常规中央空调系统相比,运行费用较大程度上降低,经济效益明显。且分时电价差值愈大,得益愈多。动态冰的研究有助于理解冰川运动与气候变化之间的关系。深圳冰片滑落式动态冰保温
某商场空调系统,采用动态冰技术,降低其制冷成本,提升顾客舒适度。贵州过冷水动态冰节能技术
动态冰浆蓄冷系统的应用场景:动态冰浆蓄冷系统可以普遍应用于各种需要制冷的场合,例如商业大楼、医院、工厂等。在高温天气下,这些场所通常需要大量的能源来保证制冷效果,而动态冰浆蓄冷系统则可以有效地降低能源消耗,从而降低了使用成本。动态冰浆蓄冷系统的未来发展前景:随着全球气候变暖的趋势愈发明显,动态冰浆蓄冷系统的应用前景也将越来越广阔。该技术不仅可以解决高温天气下的能源问题,还可以有效地降低碳排放,符合环保和可持续发展的理念。贵州过冷水动态冰节能技术
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。