厌氧氨氧化菌的生化反应机理之厌氧氨氧化。根据厌氧氨氧化反应的关键酶是位于厌氧氨氧化体中的肼氧化酶(HZO)的观点,提出了与厌氧氨氧化体膜相关的生化模型,NH4和羟胺(NH2OH)被肼水解酶(HH)转化为肼,肼又被肼氧化酶(HZO)氧化,HZO与HAO(N.europaea)相似。肼的氧化发生在厌氧氨氧化体的内部,形成N2、4个质子和4个电子。这4个电子与来自核糖质中的5个质子一起通过亚硝酸还原酶(NIR)将亚硝酸盐还原为羟胺。在这个模型中,通过在核糖质中的质子消耗和在厌氧氨氧化体里面的质子产生,厌氧氨氧化反应建立了一个质子梯度。这就在厌氧氨氧化体和核糖质之间产生了电化学质子梯度。这种梯度包含有化学势能(△pH)和电子势能。化学势能和电子势能产生使质子从厌氧氨氧化体里面移动到厌氧氨氧化体外面的一种质子驱动力△p。在厌氧氨氧化体膜束缚三磷酸腺苷酶(ATPase)的催化作用下合成三磷酸腺苷(ATP)。质子通过三磷酸腺苷酶形成的质子孔被动迁移回到核糖质中,厌氧氨氧化体膜束缚三磷酸腺苷酶位于核糖质中球形亲水的ATP合成区和厌氧氨氧化体膜中非亲水的质子迁移区,上海河道治理厌氧氨氧化菌哪家好,合成的ATP释放在核糖质中,上海河道治理厌氧氨氧化菌哪家好,上海河道治理厌氧氨氧化菌哪家好。 在全球气候变化的影响下,降水增加,土壤水分增加可复活休眠的厌氧氨氧化菌,从而影响全球氮和碳循环。上海河道治理厌氧氨氧化菌哪家好
厌氧氨氧化工艺应用现状:在过去的10年里,ANAMMOX工程化应用逐渐兴起,ANAMMOX工程化装置和研究文献呈逐年增长趋势。目前,工程化的装置主要包括移动床生物膜反应器、颗粒污泥反应器和序批式反应器,还有少数生物转盘和活性污泥系统。传统的生物膜技术也成功用于PN-ANAMMOX工艺。RBC是很早发现存有ANAMMOX反应的反应器之一,随后被Ghent大学成功应用OLAND工艺中。RBC的运营成本低,但工艺缺乏灵活性。如图是世界上厌氧氨氧化技术的实际工程应用。 潍坊造纸厌氧氨氧化菌供应厌氧氨氧化菌是一种参与厌氧氨氧化过程的微生物环保菌种。
厌氧氨氧化菌富集培养装置的选择。由于厌氧氨氧化菌的细胞产率极低,厌氧氨氧化菌富集培养装置必须具有高效的污泥持留性能。选择厌氧氨氧化菌富集培养装置应当考虑富集培养目的。在悬浮生长型富集装置中,厌氧氨氧化菌呈游离状态下,可以获得相对较纯的富集培养物,适用于厌氧氨氧化菌的分离及其动力学参数确定。在附着生长型富集培养装置中,厌氧氨氧化菌呈生物膜状态,生态系统相对丰富,具有很高的厌氧氨氧化活性,适用于接种厌氧氨氧化反应器。附着生长型富集装置附着生长型反应器是另一类常用的生物反应器。厌氧氨氧化菌可分泌胞外多聚物,具有良好的附着性能,既能相互附着而形成颗粒污泥,也能附着于填料表面而形成生物膜。由于填料限制,附着生长型反应器一般呈推流式,纵向性能有一定差异。
目前厌氧氨氧化工艺已成功运用于中国、日本、美国以及荷兰等国家的高基质(氨氮)中温(30-40°C)废水处理中,今后努力的方向则是将其较好地用于处理低基质低温的市政污水。采用厌氧氨氧化工艺时,城市污水处理厂能源自给率大幅提高。主要原因在于2方面,一是碳氮污染物去除的分离,使得有机物可充分回收,甲烷产量可增加1倍,二是污水厂运行能耗尤其是曝气能耗也大幅度削减。因此基于一体化厌氧氨氧化工艺的城市污水处理厂能量自给率提高的关键在于曝气能耗的降低和厌氧消化工艺中甲烷产量的提高。但高浓度有机碳源将对Anammox菌产生阻止作用,因此,Sharon-Anammox串联工艺目前主要用于低碳氮比废水的处理,主要应用于垃圾渗滤液、养殖废水、城镇污水处理厂厌氧消化液、味精加工废水等的处理,均取得了优异的效果。目前,ANAMMOX工艺已经成功应用于污泥消化液、垃圾渗滤液、味精废水以及猪场废水等高浓度含氮废水的处理,且达到生产性规模。 厌氧氨氧化菌的培养以及影响因素。
厌氧氨氧化菌倍增时间长,细胞产率低,对环境条件敏感,导致厌氧氨氧化菌的富集培养较为困难,限制了厌氧氨氧化工艺的大规模应用。从国内外的研究来看,实验室小试规模的厌氧氨氧化菌富集培养研究已经较为成熟,通过优化操作条件,选择合适的富集培养装置,优化营养配方,以及采取控制和强化措施等,可获得具有很高活性和高密度的厌氧氨氧化菌颗粒状富集培养物,再将其流加或接种中试或者生产性装置,可极大缩短厌氧氨氧化反应器的启动时间,从而将厌氧氨氧化工艺逐步推广应用于实际废水的处理。厌氧氨氧化菌形态多样,呈球形、卵形等,直径0.8-1.1μm。潍坊造纸厌氧氨氧化菌供应
厌氧氨氧化过程不需要曝气,降低曝气能耗,也可使剩余污泥产量降至极低,节省大量的污泥处置费用。上海河道治理厌氧氨氧化菌哪家好
厌氧氨氧化菌的有机物控制。厌氧氨氧化菌是以CO2作为惟一碳源的无机自养型细菌。有机物会对厌氧氨氧化的富集培养产生负面影响。其影响的机理主要可归结为厌氧氨氧化菌与反硝化菌的竞争。在富集培养过程中,宜对有机物进行控制。对于低C/N废水,通过前置SHARON工艺可将大部分有机物去除,为后续厌氧氨氧化工艺提供质量的进水水质。另一方面,若厌氧氨氧化菌能够利用有机物,理论上其细胞产率可明显提高,这对推广应用厌氧氨氧化工艺具有重要的现实意义。有鉴于此,不少研究者对其进行了探索研究。研究发现,添加丙酸长期(150天)富集培养时(富集培养物中Candidatus“Brocadiaanammoxidans”含量为80%),厌氧氨氧化菌可以亚硝酸盐或硝酸盐为电子受体氧化丙酸,其氧化丙酸的速率高达nmol/(min·mg菌体蛋白)。富集培养后,优势菌群转变为Candidatus“Anammoxoglobuspropionicus”(富集培养物中厌氧氨氧化菌含量仍约为80%,反硝化菌含量始终维持在2%),对有机物具有较大的亲和力。同样,添加乙酸进行富集培养也获得了类似的结果,富集培养物中的优势菌群转变为Candidatus“Brocadiafulgida”,具有自发荧光(autofluorescence)的特性。 上海河道治理厌氧氨氧化菌哪家好
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。